Google Summer of Code 2025 - OpenStreetMap Project Proposal

Raj Rajeshwar Singh Bisen

March 26, 2025

General Information

- Name: Raj Rajeshwar Singh Bisen
- OSM Account Name: raj_rajeshwar_singh_bisen
- Current Occupation: Bachelor of Technology in Computer Science and Engineering at SNU, GN, India
- Contact Information:
 - Email: thatonebipanda@gmail.com
 - GitHub: AnarchistHoneybun

Technical Background

Programming and Technical Skills

Languages

- Advanced Level: C, Java, Python, Rust, HTML/CSS, Bash
- Proficient Level: PowerShell, C++, JavaScript, TypeScript, LaTeX
- Functional Understanding: Haskell, Solidity, Zig, Go

Software and Tools

- Development Environments: VSCode, JetBrains IDEs, Visual Studio
- Version Control: Git, GitHub
- Operating Systems: Arch Linux, Windows

Libraries and Frameworks

- Web Development: React, Next.js
- Scientific Computing: NumPy, SciPy, Matplotlib, TensorFlow
- Rust Ecosystem: Ratatui, Tokio, Charm CLI

Databases and Backend Technologies

- Relational Databases: PostgreSQL, MariaDB, MySQL
- Cloud Databases: Supabase, Firebase
- Database Management: Advanced querying, database design, and optimization

Project-Specific Skills

Considering the Temporary Road Closures Database and API project, I have particularly relevant skills:

- Extensive experience with PostgreSQL, MariaDB, and other SQL databases
- Proficiency in developing robust APIs using Python, Node, and Rust
- Experience with cloud database solutions like Supabase and Firebase
- Capable of creating user interfaces for data entry and visualization

Previous Programming Projects

CredHealthBackend: Blockchain-Powered Dynamic Health Insurance System

- **Purpose:** A hackathon project integrating health metrics (sleep, walking, and food tracking) with insurance policies, dynamically adjusting premiums based on user habits via blockchain smart contracts.
- **Role:** Team of 3; I led the blockchain backend development and co-designed the mobile app frontend.
- Technical Implementation:
 - Blockchain:
 - * Developed Solidity smart contracts to mint insurance policies as NFTs, with functions to adjust health scores and premiums.
 - * Deployed a local test net using Ganache; contracts handled real-time health data fluctuations.
 - Backend:
 - * Built a Node.js API layer to bridge the React Native frontend (CredHealth repo) and blockchain.
 - \ast Stored food images in AWS S3 and processed them with Python (quantity/quality analysis).
 - Security:
 - * Ensured data integrity via blockchain immutability; limited PI health information to user device to minimize risk of leak.
- Challenges & Solutions:
 - Gas Fees & Scalability: Optimized contract functions to minimize transactions during testing.

• Outcome:

- Functional prototype deployed on a local network; demoed on-device with dynamic premium adjustments.
- Won special mention (4th place overall) in the software projects category.
- **Technologies:** Solidity, Ganache, Node.js, React Native, AWS S3, Python (OpenCV/TensorFlow for image analysis), Git.

Kupyna Hash Function Implementation for RustCrypto

- **Purpose:** Implemented Kupyna (DSTU 7564:2014), a Ukrainian national standard hash function, as part of RustCrypto's mission to provide pure-Rust cryptographic primitives. Based on the IACR specification, this contribution expands RustCrypto's algorithm support for developers requiring standards-compliant hashing.
- **Role:** One of two contributors; proposed and developed the implementation with my collaborator, later adapting it to match RustCrypto's trait system for seamless integration.

• Technical Implementation:

- Algorithm:

- * Translated the Kupyna specification into idiomatic Rust.
- * Aligned with RustCrypto's Digest trait for interoperability with other crates.
- Testing:
 - * Verified correctness against official test vectors from the IACR paper.
 - * Integrated into RustCrypto's CI/CD pipeline for automated testing and other checks.
- Performance:
 - * Actively optimizing throughput (e.g., leveraging new Galois Multiplication methods and working directly on 64 bit chunks in ongoing work).
- Challenges & Solutions:
 - **Trait Integration:** Studied RustCrypto's existing hash implementations (e.g., Groestl) to ensure API consistency.
- Outcome:
 - Successfully merged into RustCrypto/hashes and published as part of the official suite.
 - Downstream-ready for use in authentication, blockchain, or other cryptographic applications.
- Technologies: Rust, GitHub Actions (CI/CD).

Contributions to the Target Project

As per the GSoC guidelines, I contributed to the **iD editor** (a core OpenStreetMap web application) to demonstrate my ability to work with OSM's ecosystem. While my proposed GSoC project involves creating a new system for Temporary Road Closures (with no existing repository), my Pull Request #10903 to iD showcases relevant technical and collaborative skills for web-based OSM tools.

- Feature Implementation: Addressed Issue #10870 by implementing an auto toggle for highlighting unsaved changes on iD editor startup. This helps users quickly identify pending edits from their previous session, improving workflow efficiency.
- Technical Scope:
 - Modified the JavaScript codebase to persist and render unsaved change markers.
 - Leveraged iD's state management system to track edits across sessions.
- Development Process:
 - Set up the iD project locally, navigating its build system and architecture.
 - Analyzed the editor's event-driven workflow to integrate the feature without disrupting core functionality.
- **Relevance to Proposed Project:** Though my GSoC project would be new, this contribution demonstrates:
 - Experience with web apps.
 - Ability to work within OSM's technical and community standards.
 - Skill in enhancing user-facing tools—critical for the planned Road Closures API's frontend components.

This contribution underscores my readiness to develop web-based tools for OSM, even as I transition to a new codebase for my GSoC project.

Project Proposal

Project Title

Temporary road closures database and API

Project Overview

[concise summary of what's intended to be accomplished]

Problem Statement

[articulate problem and issues it's meant to address]

Proposed Solution

[Describe plan in detail to solve the problem. Include:

- Technical approach
- Tools and technologies
- Integration

]

• Design considerations or limitations

Expected Outcomes

- Core Deliverables: [essenatial components]
- Stretch Goals: [Additional features]
- Fallback Plan: [contingencies]

Technical Implementation Details

[specific technical details about implementation plan. include:

- System architecture
- API designs
- Database schemas
- Algorithms
- Dependencies and integration points

diagrams(?).]

Learning Objectives

[knowledge goals, alignment with learning objectives etc]

Project Timeline

Availability

- Planned Vacations: [vacations or time off]
- Concurrent Commitments: [Classes, employment, or other obligations during GSoC]
- Weekly Availability: [weekly/daily availability]

Project Schedule

[detailed week-by-week schedule showing:

- Tasks to be completed
- Major milestones
- Testing periods
- Documentation phases

1-2 weeks per step]

Week	Tasks	Hours
1	[List specific tasks for week 1]	[Hours]
2	[List specific tasks for week 2]	[Hours]

Total Commitment

[verify hours adding up.]

Communication Plan

Meeting Schedule

[regular meeting schedule with mentor(s).]

Progress Reporting

[weekly/daily updates, blogs(?), github projects(?)]

Use of AI Tools

[disclose AI tool usage, explain output verification and scope and method of use]

Additional Information

[Include any other information that might be relevant to application.]