[Talk-ca] using image recognition to create building foot prints.

john whelan jwhelan0112 at gmail.com
Fri Feb 2 16:10:40 UTC 2018


I think when you have something available we should be able to find
resources to double check the quality and also to work out a process to
import them.  The latter will be interesting both from the technical point
of view and the acceptance within the OSM community.

My concern on the Canadian building project was getting reasonable building
outlines from a mixture of mappers given some experiences we've seen in the
past.

Cheerio John

2018-02-02 11:01 GMT-05:00 Gravel, Pierre (NRCan/RNCan) <
pierre.gravel at canada.ca>:

> Hi John, yes I am on the mailing list.
>
> I confirm that we (NRCAN) are working on a process to extract building
> footprints from airborne LiDAR data and we expect to disseminate these
> footprints from June 2018 on Open Map Canada Portal.
>
> The accuracy of these footprints well be very good, but of course that an
> automatic extraction process can’t be better than human eyes.
>
> The quality of these footprints are totally depending on the quality of
> the LiDAR data in input (density and classification) and we will filter
> LiDAR projects that we will use to make sure that the footprints quality
> will meet a minimum threshold.
>
> It’s not an objective of NRCAN to upload these footprints on OSM, but I
> think that these footprints can be a very good start for OSM communities
> then to allow people to improve these footprints.
>
> I take the opportunity to ask you if you accept to give us a feedback on
> these footprints before the official launch.
>
> If yes, It will be my pleasure to provide a pre-production data for those
> who want to check them.
>
>
>
> It sounds good ?
>
>
>
> Best Regards
>
>
>
> Pierre Gravel
>
> Centre canadien de cartographie et d’observation de la terre
>
> Ressources naturelles Canada / Gouvernement du Canada
>
> Pierre.Gravel at canada.ca / Tél. 819-564-5600 <(819)%20564-5600>, poste 246
>
>
>
> Canadian Center of Mapping and Earth Observation
>
> Natural Resources Canada / Government of Canada
>
> Pierre.Gravel at canada.ca / Tel. 819-564-5600, x246 <(819)%20564-5600>
>
>
>
>
>
>
>
>
>
> *From:* Pierre Béland [mailto:pierzenh at yahoo.fr]
> *Sent:* January 29, 2018 4:54 PM
> *To:* Talk-CA OpenStreetMap <talk-ca at openstreetmap.org>; john whelan <
> jwhelan0112 at gmail.com>
> *Cc:* Gravel, Pierre (NRCan/RNCan) <pierre.gravel at canada.ca>
> *Subject:* Re: [Talk-ca] using image recognition to create building foot
> prints.
>
>
>
> Précision,
>
> Les missions aériennes permettent de produire des images de grande
> qualité.
>
>  On y associe des équipements LIDAR qui émettent un signal vers le sol
> pour mesurer la distance. Aussi bien la technique LIDAR que de petits
> drones sont aujourd'hui capables de produire des modèles d'élévation avec
> quelques centimètres de précision.  Cela permet aussi de produire des
> modèles 3D des immeubles et de distinguer avec la végétation.
>
>
>
> Suite aux inondations du Richelieu et du Lac Champlain en 2011, des
> modèles d'élévation très des zones urbaines en bordure de la rivière
> Richelieu ont été produites.
>
>
>
> Si on se rappelle les discussions il y a quelques mois, un tel travail
> d'import va nécessiter des ressources importantes. Les diverses communautés
> OSM locales devront évaluer leur capacité à réaliser des projets d'import
> d'immeubles. Et il faut éviter de se baser sur le modèle «Cartoparties»
> pour réaliser de tels projets. Des milliers de personnes qui sont
> sensibiliées quelques heures à la cartographie ne reviennent pas ensuite et
> laisse souvent une donnée de piètre qualité.
>
>
>
> Il faut être réaliste et construire peu à peu, motiver des communautés
> locales à expérimenter un modèle d'import de la donnée. Cela fera ensuite
> boule de neige ( c'est de saison :)  )
>
>
> *Pierre *
>
>
>
>
>
> Le lundi 29 janvier 2018 16:07:31 HNE, Pierre Béland <pierzenh at yahoo.fr>
> a écrit :
>
>
>
>
>
> Bonjour John
>
>
>
> Les spécialistes d'imagerie produisent des couches de données assez
> précises à partir d'imagerie LIDAR ou de drones, incluant, immeubles, cours
> d'eau et occupation du sol. Ces images offrent qualité et précision. Des
> techniques de classification, interprétation, correction permettent aux
> spécialistes de converger vers un produit de qualité.  Et bien sûr toutes
> ces avancées technologiques et l'accès éventuel à des profanes bousculent
> les habitudes tout comme les véhicules sans conducteur :)
>
>
>
> Même si Statistique Canada fournit à OSM un fichier produit par des
> spécialistes, il sera nécessaire ensuite d'établir une procédure d'import,
> de fusionner / aligner avec les données existantes et de corriger.
>
>
>
> Et ouvront la porte au Futur! Une autre avenue, c'est l'accès aux profanes
> que nous sommes à des outils semi-automatiques pour faciliter la
> digitalisation de différents éléments tels immeubles, routes et rivières.
> Je ne connais pas l'historique des expériences d'utilisation de tels
> outils. Mais on peut remonter en 2011, où on parlait d'un outil de
> détection de route. Divers articles traitent aussi de ce sujet.
>
> https://alastaira.wordpress.com/2011/02/04/automatic-road-
> detection-using-bing-maps-imagery/
>
> https://gis.stackexchange.com/questions/77876/is-there-a-
> tool-that-performs-automatic-recognition-of-buildings
>
>
>
>
>
> Facebook a aussi expérimenté des outils de reconnaissance d'image en
> Thaîlande récemment. Selon les plaintes de certains contributeurs, les
> données ont été ajoutées à OSM sans valider suffisamment avec la réalité
> sur le terrain.
>
>
>
> Je pense qu'il serait intéressant pour les contributeurs expérimentés
> d'avoir accès à des outils semi-automatisés facilitant dans JOSM par
> exemple le tracé d'immeubles, routes, cours d'eau, etc. Pour un cours d'eau
> par exemple, je déplace le curseur de la souris, et les contours et le
> centre de la rivière sont tracés automatiquement. Ou encore le contour d'un
> lac est tracé.
>
>
>
>
>
> *Pierre *
>
>
>
>
>
> Le lundi 29 janvier 2018 15:15:59 HNE, john whelan <jwhelan0112 at gmail.com>
> a écrit :
>
>
>
>
>
> ·
>
> *NRCan is working on a methodology to extract building footprints,
> including topographic elevation and height attributes, from LiDAR *
>
> *Traditionally OSM has not been happy with this sort of thing.  The
> accuracy can be poor.*
>
> *We probably need to think about this since the BC2020i project had this
> mentioned and Stats Can has given it a mention also.  I'm not promoting it
> nor saying its bad but it will almost certainly be raised shortly.*
>
> *First if an import was done using this data who would be the local group
> to approve it?  I suspect because it covers the entire country it would be
> the talk-ca group.  The date would come through the TB portal so licensing
> is not an issue.  Or it could be split into regions with regional local
> groups making decisions.*
>
> *The other very big question is to do with data quality.  So far nothing
> that is machine learnt from imagery has consistently met the expectations
> of OpenStreetMap.*
>
> *Note to Pierre I'm not sure if you are on the talk-ca mailing list but
> any feedback you might have on the data quality side would be welcome and
> will be shared amongst the group.*
>
> *Thoughts?*
>
> *Thanks John*
>
> _______________________________________________
> Talk-ca mailing list
> Talk-ca at openstreetmap.org
> https://lists.openstreetmap.org/listinfo/talk-ca
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.openstreetmap.org/pipermail/talk-ca/attachments/20180202/e0d4067f/attachment-0001.html>


More information about the Talk-ca mailing list